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Abstract

Hierarchical compositional models (HCMs) have recently shown impressive gener-
alisation capabilities, especially with small amounts of training data. However, regarding
occlusion and background clutter experimental setups have been relatively controlled so
far. The contribution of this paper is two-fold. First, we introduce a greedy EM-type al-
gorithm to automatically infer the complete structure of HCMs. Second, we demonstrate
how HCMs can be applied to the robust analysis of patterns under structured distortions.
The proposed compositional active basis models (CABM) are embedded into a proba-
bilistic formulation of the learning and inference processes. Building on the statistical
framework, we enhance the CABM with an implicit geometric background model that
reduces the models sensitivity to outliers due to occlusions and background clutter.

In order to demonstrate the robustness of the proposed object representation, we eval-
uate it on a complex forensic image analysis task. We demonstrate that probabilistic
CABMs are capable of recognising patterns under complex non-linear distortions that
can hardly be represented by a finite set of training data. Experimental results show that
the forensic image analysis task is processed with unprecedented quality.

1 Introduction
A critical property for computer vision systems is the robustness against pattern distor-
tions and structured background. Recently, hierarchical compositional models (HCMs) have
shown impressive generalisation ability in standard classification [7], transfer learning [3]
and one-shot learning [28]. However, regarding occlusions and non-linear distortions of
patterns, experimental setups have been controlled so far. An important question is how
robust these models are under more challenging pattern recognition conditions. The auto-
mated analysis of forensic images is highly suitable for studying this question. The task of
forensic footwear impression recognition is particularly interesting because it unifies many
computer vision questions in a well-defined application scenario (Figure 1). Some of the
most interesting properties of this application are: 1) The patterns in probe images are sig-
nificantly occluded and subject to non-linear distortions that interfere with the pattern. 2)
The background signal contains structured geometry that is difficult to distinguish from the
actual pattern of interest. 3) The geometry of the patterns is diverse and complex. 4) Probe
images are scarce compared to the number of reference impressions, thus learning has to be
performed in one shot.
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(a) (b) (c) (d)
Figure 1: Overview over the process of automated footwear impression analysis. (a) A typ-
ical probe image. The pattern is distorted by occlusion and background clutter; (b) The
corresponding reference impression; (c) Sketch of the learned CABM for the reference im-
pression. Pixels that share the same colour are explained by the same type of part. (d) An
overlay of the learned CABM over the probe image with the spatial transformation that max-
imises the posterior probability. Despite complex structured background and missing parts,
the correct spatial transformation has been recovered.

We propose to formulate this pattern recognition task in a statistical estimation setting by
representing a reference impression with a generative model. We will estimate the posterior
distribution of the model parameters given the probe image. The advantages of a generative
approach to pattern analysis have been argued in detail e.g. in [10]. We will show that a
thorough mathematical formulation of the pattern recognition process is important for over-
coming the challenging properties 1) - 4) mentioned in the previous paragraph.
We propose to represent the pattern as a hierarchical composition of active basis models.
Active basis models are generative HCMs. During learning, the model is composed hier-
archically from groups of active basis models in a bottom-up manner. The model structure
is learned with a greedy EM-type clustering process (Sections 3.1 & 3.2). The resulting
compositional active basis model (CABM) encodes local as well as long-range geometric
constraints of the pattern. In this way it forms a powerful prior for the distinction of the
actual pattern of interest from the structured background patterns.
We present a fully probabilistic formulation of the learning and inference process for CABMs.
Building on the statistical framework, we enhance the CABM with an implicit geometric
background model that increases the robustness against occlusion and clutter. The main
novelties of this work are:

i) A greedy EM-type algorithm that can infer the full structure of general HCMs

ii) A fully probabilistic formulation of compositional active basis models

iii) An implicit geometric background model that increases the CABMs robustness to
occlusion and structured background clutter

iv) A significant improvement of the recognition performance in footwear impression
analysis
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Prior Work on HCMs: Hierarchical compositional models have been successfully applied
in computer vision applications e.g. in [7, 8, 9, 19, 24, 28, 32]. However, the models are
usually applied in a relatively controlled experimental setup with respect to distortions of the
patterns and occlusions and/or trained with a lot of data. In this work, we learn a hierarchical
compositional representation from just one training sample and perform pattern recognition
under highly unconstrained conditions. Our work builds on the compositional sparse cod-
ing procedure proposed in [3, 29]. However, we do not stop after the dictionary learning
phase, but encode higher structural relationships between dictionary templates. Probabilistic
HCMs have been proposed for representing faces in [26, 30] and for general objects in [3].
However, in contrast to these, we automatically learn the structure of the hierarchy based
on the greedy EM-type algorithm proposed. This facilitates the automated selection of the
number of dictionary templates and hierarchical layers. Unsupervised learning of HCMs has
been successfully performed in e.g. [6, 32]. However, [6] is not probabilistically formulated.
The work in [32] is most related to our work. The main differences are that we use fully
generative compositional units instead of invariant features. Furthermore, we do not make
hard decisions on the detection of parts instead the full part likelihoods are used throughout
the bottom-up learning process. Finally, our model is enhanced with an implicit geomet-
ric background model, which makes it more robust to occlusions and background clutter.
Despite the popularity of hierarchical compositional models, to the best of our knowledge,
this is the first time they are shown to achieve state-of-the-art recognition performance in a
highly unconstrained vision task.
Prior Work on Footwear Impression Analysis: Earlier attempts in footwear impression
recognition learn global [1, 5, 11] or local [13, 21, 22, 25] hand-crafted feature representa-
tions. However, it was shown that the application scenario of these works is limited [13, 15]
(see also experiments in Section 4). The main reasons are that pure local as well as pure
global representations are sensitive to local distortions of patterns. Several works enrich lo-
cal features with global constraints [2, 4, 17, 20, 27]. However, the main assumption in all
works is that the features can be detected successfully by a purely local process. Thus, local
ambiguities as well as structured backgrounds and local pattern distortions have not been
taken into account. In this work, we propose to encode both the local and global structure
in a joint pattern model. The hierarchical representation renders it possible to localise the
matching cost during model fitting. We augment the pattern model with a geometric back-
ground model that increases robustness to structured clutter and missing parts.
Experiments. Experimental comparison is performed on the FID-300 database [13]
(http://fid.cs.unibas.ch/). We demonstrate an increase in recognition performance by a wide
margin compared to previous works [2, 5, 11, 13, 27].
In Section 2, we will introduce the theoretical background of traditional active basis mod-
els. Section 3 introduces a detailed probabilistic formulation of compositional active basis
models and the implicit geometric background model. Experimental results are presented in
Section 4.

2 Theoretical Background - Active Basis Models
In this Section we shall introduce active basis models (ABMs). Detailed information con-
cerning ABMs can be found in the original work [29]. We concentrate on the results that
are relevant for understanding our contribution. We adapt the notation used in [29] at some
points such that it fits into the theoretical framework presented in Section 3.
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ABMs are a type of deformable template for describing object shapes under small local shape
deformations. An ABM is composed of a set of basis filters at positions Xi = {xi,yi} with
orientations αi. Throughout this work, we use combinations of even and odd Gabor wavelets
B as basis filters. We keep the frequency fixed. The set of parameters per filter is denoted
by β 0

i = {X0
i ,α

0
i }. The spatial parameters are encoded relative to the position of the overall

template β 1
1 , which is, for now, assumed to be given. The position of an individual basis

filter in the image frame therefore is βi = {Xi = X1
1 +X0

i ,αi = α1
1 +α0

i }. The parameters of
an ABM are denoted by Π = {β 0

i |i = 1 . . .N}. The global spatial configuration of the basis
filters is rigid. However, each filter can perturb its location and orientation independently
of the other filters within a small specified range ∆β = {∆X ,∆α}. This active deformation
enables the model to compensate small changes in the object shape without the need for re-
optimising the state of all variables, as would be the case when using a global shape model.
An ABM is a linear additive model in the form of the well-known sparse coding principle
proposed by Olshausen and Field [18]. An important difference, however, is that the ABM
is applied to represent a whole ensemble of image patches {Im,m = 1, . . .M}. Each patch is
represented by:

Im =CmBΠ +Um =
N

∑
i=1

ci,mBβi +Um. (1)

The patches Im are linearly decomposed into a set of orthogonal basis filters BΠ with coef-
ficients Cm and the residual image Um. The individual coefficients are calculated by ci,m =
〈Im,Bβi〉. The basis filters have zero mean and unit l2 norm. The probability density of a
patch Im given the template Π is modelled by:

p(Im|Π) = p(Um|Cm)p(Cm|Π) = p(Um|Cm)
N

∏
i=1

p(β 0
i |β 1

1 )p(cm,i|β 0
i ) (2)

The factorization in Equation 2 is based on the assumption that the model has a tree struc-
ture and that parts do not overlap. In the original equation as introduced in [29], the factor
p(β 0

i |β 1
1 ) is omitted. This is equivalent to assuming that the patches {Im|m = 1, . . . ,M} are

aligned and depict an object that is exactly in the same pose. This assumption is a major
weakness of the active basis model approach. In Section 3.1 we will show that the model
can be learned from unaligned training images as proposed in [12]. A more challenging task
is to resolve the assumption about the fixed pose of the object. This is, however, beyond the
scope of this work as footwear impressions can be approximated by rigid objects.
The template Π can be learned based on a set of training patches Im with a matching pur-
suit process [16]. Subsequently, the composition of filters BΠ could be directly applied
as an object detector. However, in order to be less sensitive to strong edges in the back-
ground clutter we estimate the expected distribution of filter responses in a background im-
age q(cm,i|β 0

i ) and compare it to the one we observe in the training patches p(cm,i|β 0
i ). Let

q(I|Π) = q(C,U |Π) = q(U |C)q(C|Π) model the distribution of filter responses and residual
images as they occur in natural images. The ratio between the foreground and the back-
ground model is:

p(Im|Π)

q(Im|Π)
=

p(Um|Cm)∏
N
i=1 p(β 0

i |β 1
1 )p(cm,i|β 0

i )

q(Um|Cm)∏
N
i=1 q(β 0

i |β 1
1 )q(cm,i|β 0

i )
=

N

∏
i=1

p(β 0
i |β 1

1 )p(cm,i|β 0
i )

q(β 0
i |β 1

1 )q(cm,i|β 0
i )

. (3)

An important assumption is that the probability densities of the residual background are the
same q(Um|Cm) = p(Um|Cm) [12, 29], thus they cancel out of the equation. This means that
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those parts of the image that cannot be explained by the basis filters follow the same distri-
bution. Furthermore, p(β 0

i |β 1
1 ) can be modelled by a uniform distribution over the range of

active perturbation U
β 0

i
(∆β ) around β 0

i . The background model q(β 0
i |β 1

1 ) =U(D,α) is uni-
form over the orientations α and the patch domain D= d×d, where d is the size of the patch.
We assume q(cm,i|β 0

i ) is stationary and therefore translation-, rotation- and scale-invariant.
The distribution q(cm,i|β 0

i ) can be estimated by pooling a histogram of basis filter responses
from a random set of natural images. In contrast to the standard assumption of a Gaussian
distribution, q(cm,i|β 0

i ) is much more heavy-tailed and can therefore better explain strong
edges that occur in the cluttered background. This approach of reducing the sensitivity to
clutter was introduced in [29]. We will introduce an additional implicit background model
on compositions of filters in Section 3.3.
The foreground distribution pi(cm,i|β 0

i ) is modelled in the form of an exponential family
model:

p(cm,i|λi,β
0
i ) =

exp(λiσ(|cm,i|2))q(cm,i|β 0
i )

Z(λi)
, (4)

As proposed in [29], we apply a sigmoid transform σ(r) = τ[2/(1+ e−2r/τ)− 1] that satu-
rates at value τ . The normalising constant Z(λi) as well as the mean of the model µ(λi) can
be estimated for a range of λ values on a set of natural training images by numerical integra-
tion. Following the maximum entropy principle [23], the maximum likelihood estimate for
λi = µ−1(∑M

m=1 σ(|cm,i|2)/M). The coupling of the matching pursuit process with the mod-
elling of the expected distribution of the coefficients is generally referred to as shared match-
ing pursuit [29]. We denote the final ABM by Θ = {Π,Λ}, where Λ = {λi|i = 1, . . . ,N}.
In the next Section 3, we will introduce a hierarchical extension of ABMs called composi-
tional active basis models (CABMs). We propose a greedy EM-type learning scheme that
makes it possible to induce the hierarchical model structure in an unsupervised manner. Fur-
thermore, we embed the methodology in a fully probabilistic theoretical framework.

3 Compositional Active Basis Models

In this Section we will extend the active basis model framework to encompass hierarchic
compositions of ABMs (Section 3.1 & 3.2). The advantages of hierarchical compositional
models have been argued in detail in e.g. [8, 31, 33]. Regarding the traditional flat ABM, a
hierarchical model makes it possible to decouple the globally rigid dependence structure be-
tween the random variables into localised group-wise dependencies. The hierarchical decou-
pling will allow us to compensate missing object parts with a robust geometric background
model during inference and will thus lead to a more robust pattern recognition in Section 4.

For ease of notation, we will use in all equations the example of a level-two CABM. A
graphical model with N1 = 2 level-one groups is depicted in Figure 2. This is the simplest
possible CABM. However, the presented results fully generalise to arbitrary numbers of lay-
ers and compositions per node. Note that the standard ABM can be regarded as a special
case of CABM with no compositional layer.
The probability density of an image patch given a level-two CABM factorises in the follow-
ing way:

p(Im|Θ) = p(Um|Cm) ∏
j∈ch(β 2

1 )

p(β 1
j |β 2

1 ) ∏
i∈ch(β 1

j )

p(β 0
i |β 1

j )p(cm,i|β 0
i ), (5)
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(a) (b)
Figure 2: Graphical model of a level-two compositional active basis model. (a) The full
graphical model; (b) The common way of illustrating hierarchical models, by focusing on
the model structure. We depict the simplest possible compositional active basis model, a
binary-tree structured Markov random field.

where the term ch(β 1
j ) denotes the set of child nodes of the node β 1

j . The compositional layer
introduces the factor p(β 0

i |β 1
j ), which conditions the spatial configuration of the individual

basis filters β 0
i on different parent nodes β 1

j . In this way, the global dependence structure is
broken into multiple conditionally independent groups. However, the increased power of the
model comes at the cost of having to estimate more parameters. In this work, we present an
algorithm that is capable of estimating the number of independent level-one groups N1 (Sec-
tion 3.1) as well as the number of layers L (Section 3.2). During learning, we benefit from
the compositional structure of the model, as it allows us to first learn the level-one models,
before composing them into a level-two model. This property facilitates the efficient learning
of complex hierarchical structures as demonstrated in [6, 32]. We manually set the number
of parts that are composed to two. However, the proposed learning scheme can be applied
with any number of compositions. Following the standard active basis model framework, we
assume that the geometric relation between ABMs can be modelled as uniform distribution
over the range of active perturbation. Therefore we define p(β 1

j |β 2
1 ) =U

β 1
j
(∆β ).

In the following Section 3.1 we will introduce an algorithm that will infer the number of
nodes for a layer Nl given the parts of the previous layer automatically.

3.1 Greedy EM-type Clustering
In order to learn the level-one models with shared matching pursuit [29], we must first gather
the training patches for the individual models. This can be done by standard K-Means clus-
tering as proposed in [31, 32]. However, in an unsupervised learning setup it is desirable
to automatically determine the optimal number of clusters. We therefore introduce a greedy
EM-type clustering scheme. We start by learning the first level-one model Θ1

1 according to
the following procedure: In the first iteration t = 1, we sample an initial set of patches It

1
according to an initial distribution Q. We will define Q to be uniform on the image lattice
Q(x,y) = U(x,y). However, alternative distributions that are based on prior measures could
be possible (e.g. based on saliency or on the gradient information). We learn an initial ABM
θ t

1 from It
1 with the shared matching pursuit algorithm. For the next learning iteration, we

gather all image patches for which the prediction of the object model is better than a default
background model:
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p(It+1
1 |θ t

1)> d(It+1
1 ) (6a)

max ∏
i∈ch(β 1

1 )

p(β 0
i |β 1

1 )
exp(λiσ(|cm,i|2))q(cm,i|β 0

i )

Z(λi)
> max ∏

i∈ch(β 1
1 )

U(β 0
i )q(cm,i|β 0

i ). (6b)

The default model d(It+1
1 ) simply assumes that the parts follow independent uniform distri-

butions over the domain of the patch. Note that the parameters β 0
i can be different for the

two sides of the inequality. Alternatively, a fixed detection threshold could also be applied.
The set of patches that satisfies Equation 6b serves as training data for the next iteration of
shared matching pursuit. We terminate the iterative learning process when p(It+1

1 |θ t
1) does

not change significantly between consecutive iterations. Finally, we set Θ1
1 = θ t

1.
We repeat the above procedure for the second level-one model θ t

2, but this time the ob-
ject model θ t

2 must achieve a better prediction on the training patches It
2 than all previously

learned models:
p(It+1

2 |θ t
2)> max(d(It+1

2 ), p(It+1
2 |Θ1

1)). (7)

In this way, ABMs are learned greedily until a new model is unable to explain some parts
of the image better than previously learned models. This process is inspired by the EM-type
learning as proposed in [12]. However, the important difference is that by introducing the
default model, we are in addition able to infer the number of clusters from the data.
Given a set of level-one ABMs, we shall in Section 3.2 compose these into higher-order
models that encode long-range structural dependencies of the trainingpattern.

3.2 Compositional Structure Induction
A common way of learning higher-order compositional models is to detect the learned level-
one models Θ1

i based on a fixed threshold η , and to subsequently learn part compositions
using standard clustering techniques [6, 31, 32]. However, we propose to follow the same
greedy EM-type clustering as introduced in Section 3.1 in order to learn compositions of
ABMs. Hence, we replace the Gabor wavelets as basis filters with the learned level-one
models Θ1

i . The main advantage compared to other approaches is that we can avoid to take
an early decision on the presence of level-one models. Thus, we can leverage additional
knowledge from the level-two model when deciding on the presence of level-one models.
This late commitment is possible because of p(Im|Θ2

j) is a weighted summary of low level
statistics p(Im|Θ1

i ) (Equation 5). Therefore, if one of these p(Im|Θ1
i ) is a bit too low, the

compositional distribution p(Im|Θ2
j) can still compensate for this in order to outperform the

default model. In this way, parts can be recovered that would have been classified as back-
ground before. This process can be observed in Figure 3 multiple times, whenever image
regions that are not encoded in one layer get encoded in the layer above. The selection
process for the training patches It

2 can again be guided by the independence principle as in
Equation 6. The procedure is repeated for multiple levels until no further compositions are
found, thus generating a probabilistic compositional active basis model ΘL. The results of
the learning process are illustrated in Figure 3.
In order to build a model for the whole reference impression, we do not need a complex
top-down process as e.g. [32]. We can assume that the structure in the training image is
generated by the object of interest. Therefore, the full CABM can be built by connecting
all detected parts to the root node that are not explained away by a part from a higher layer
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(a) (b) (c) (d) (e) (f)
Figure 3: The results of the compositional learning procedure when applied to a reference
impression. (a) The input image. (b-f) The learning result for each layer (1− 5) of the
hierarchy. Bottom row: Illustration if the learned CABMs with different colours in their
mean position. The individual Gabor wavelets are represented by small strokes. Top row:
The input image when encoded with the learned models of each layer.

(Figure 1).
At this point, we have learned the number of layers L as well as the number of parts for
each individual layer N1,...,L. Furthermore, we have formulated the pattern model as well
as the learning process in a fully probabilistic manner. These achievements mark the main
contribution of this work. In the following Section 3.3, we further propose to augment the
pattern model with an implicit background model that reduces the sensitivity to outliers due
to occlusions or structured clutter.

3.3 Robust Inference

Let assume we are given a two-level CABM Θ2
1. We want to infer its optimal spatial config-

uration for a test image I. Thus, we want to maximise the posterior p(Π|I,Θ2
1). According

to Bayes’ rule the posterior can be written as:

p(Π|I,Θ2
1) ∝ P(I|Π,Θ2

1)P(Π|Θ2
1). (8)

We can infer the parameters with a standard recursive bottom-up inference procedure as e.g.
presented in [3, 6, 32]. A main issue is, however, that in the probe images some parts of the
reference impression are missing ( Figure 1 ). Without adjustments to the standard model
(Equation 5), missing parts are evaluated at the background and thus disproportionately de-
crease the posterior probability at the correct position. As we do not have prior information
on what parts are occluded or on the appearance of the background, we cannot pre-learn an
explicit occlusion model as e.g. in [9, 14]. Instead, we augment the distribution that models
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the geometry between parts with an implicit background model:

p̂(β 0
i |β 1

j ) =
p(β 0

i |β 1
j )+Ur

2
. (9)

The distribution Ur is defined over the whole patch domain and is greater zero where p(β 0
i |β 1

j )=

0. In this way, part configurations that could not be explained by p(β 0
i |β 1

j ) at all are assigned
a small probability in p̂(β 0

i |β 1
j ). Thus the CABM becomes more robust to locally unlikely

part configurations if the other parts of the model still fit well with the data.

4 Experiments
We evaluate the proposed methodology on the FID-300 dataset [13] (http://fid.cs.unibas.ch/).
The footwear impression dataset contains 300 probe images IP and 1175 reference impres-
sions. During training we learn a pattern model ΘR for each of the reference impressions.
At testing time we calculate the posterior p(ΠR|IP,ΘR) for each model. An important aspect
of the probabilistic embedding of compositional active basis models is that we can compare
inference results for models with different numbers of layers and nodes.
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Figure 4: Image retrieval results on the FID-300 dataset.

According to the standard evaluation procedure, we sort the models based on their pos-
terior probability and record the position of the correct reference from the ranked list. Af-
terwards, we calculate the cumulative distribution of the rank histogram. Figure 4 shows the
cumulative match curves of our method compared to a reimplementation of five other ap-
proaches [2, 5, 11, 13, 27]. The section on the y-axis marks rank-1 performance. Compared
to the other approaches the proposed method is able to increase the performance by a wide
margin. We constantly outperform the state-of-the-art by approximately 15% starting from
3% of the ranked list.
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5 Conclusion & Future Work
In this paper we propose an approach for learning the structure of compositional active basis
models. We infer the number of layers per model as well as the number of parts in each layer
with a greedy EM-type clustering process. Furthermore, we formulate the pattern model as
well as the learning process in a fully probabilistic manner. Finally, based on the statistical
framework, we augment the pattern model with an implicit background model that reduces
the models sensitivity to pattern occlusions or structured clutter. We show that the proposed
methodology is capable of solving the complex pattern analysis task of footwear impression
recognition with yet unseen quality.
We think that part sharing between pattern models would open promising directions for fu-
ture research, facilitating the learning of semantic regularities between patterns.
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